Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Front Neurosci ; 17: 1284262, 2023.
Article in English | MEDLINE | ID: mdl-38089970

ABSTRACT

Cryogenic magnetoencephalography (MEG) enhances the presurgical assessment of refractory focal epilepsy (RFE). Optically pumped magnetometers (OPMs) are cryogen-free sensors that enable on-scalp MEG recordings. Here, we investigate the application of tri-axial OPMs [87Rb (Rb-OPM) and 4He gas (He-OPM)] for the detection of interictal epileptiform discharges (IEDs). IEDs were recorded simultaneously with 4 tri-axial Rb- and 4 tri-axial He-OPMs in a child with RFE. IEDs were identified visually, isolated from magnetic background noise using independent component analysis (ICA) and were studied following their optimal magnetic field orientation thanks to virtual sensors. Most IEDs (>1,000) were detectable by both He- and Rb-OPM recordings. IEDs were isolated by ICA and the resulting magnetic field oriented mostly tangential to the scalp in Rb-OPMs and radial in He-OPMs. Likely due to differences in sensor locations, the IED amplitude was higher with Rb-OPMs. This case study shows comparable ability of Rb-OPMs and He-OPMs to detect IEDs and the substantial benefits of triaxial OPMs to detect IEDs from different sensor locations. Tri-axial OPMs allow to maximize spatial brain sampling for IEDs detection with a limited number of sensors.

2.
Neuroimage ; 284: 120428, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37890563

ABSTRACT

During the last trimester of gestation, fetuses and preterm neonates begin to respond to sensory stimulation and to discover the structure of their environment. Yet, neuronal migration is still ongoing. This late migration notably concerns the supra-granular layers neurons, which are believed to play a critical role in encoding predictions and detecting regularities. In order to gain a deeper understanding of how the brain processes and perceives regularities during this stage of development, we conducted a study in which we recorded event-related potentials (ERP) in 31-wGA preterm and full-term neonates exposed to alternating auditory sequences (e.g. "ba ga ba ga ba"), when the regularity of these sequences was violated by a repetition (e.g., ``ba ga ba ga ga''). We compared the ERPs in this case to those obtained when violating a simple repetition pattern ("ga ga ga ga ga" vs. "ga ga ga ga ba"). Our results indicated that both preterm and full-term neonates were able to detect violations of regularity in both types of sequences, indicating that as early as 31 weeks gestational age, human neonates are sensitive to the conditional statistics between successive auditory elements. Full-term neonates showed an early and similar mismatch response (MMR) in the repetition and alternating sequences. In contrast, 31-wGA neonates exhibited a two-component MMR. The first component which was only observed for simple sequences with repetition, corresponded to sensory adaptation. It was followed much later by a deviance-detection component that was observed for both alternation and repetition sequences. This pattern confirms that MMRs detected at the scalp may correspond to a dual cortical process and shows that deviance detection computed by higher-level regions accelerates dramatically with brain maturation during the last weeks of gestation to become indistinguishable from bottom-up sensory adaptation at term.


Subject(s)
Brain , Electroencephalography , Infant, Newborn , Female , Humans , Acoustic Stimulation , Brain/physiology , Evoked Potentials , Brain Mapping , Evoked Potentials, Auditory/physiology
3.
Neurophotonics ; 10(2): 025005, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37114185

ABSTRACT

Significance Aims: The neurovascular mechanisms underlying the initiation of absence seizures and their dynamics are still not well understood. The objective of this study was to better noninvasively characterize the dynamics of the neuronal and vascular network at the transition from the interictal state to the ictal state of absence seizures and back to the interictal state using a combined electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and diffuse correlation spectroscopy (DCS) approach. The second objective was to develop hypotheses about the neuronal and vascular mechanisms that propel the networks to the 3-Hz spikes and wave discharges (SWDs) observed during absence seizures. Approaches: We evaluated the simultaneous changes in electrical (neuronal) and optical dynamics [hemodynamic, with changes in (Hb) and cerebral blood flow] of 8 pediatric patients experiencing 25 typical childhood absence seizures during the transition from the interictal state to the absence seizure by simultaneously performing EEG, fNIRS, and DCS. Results: Starting from ∼ 20 s before the onset of the SWD, we observed a transient direct current potential shift that correlated with alterations in functional fNIRS and DCS measurements of the cerebral hemodynamics detecting the preictal changes. Discussion: Our noninvasive multimodal approach highlights the dynamic interactions between the neuronal and vascular compartments that take place in the neuronal network near the time of the onset of absence seizures in a very specific cerebral hemodynamic environment. These noninvasive approaches contribute to a better understanding of the electrical hemodynamic environment prior to seizure onset. Whether this may ultimately be relevant for diagnostic and therapeutic approaches requires further evaluation.

4.
Autism Res ; 16(1): 99-105, 2023 01.
Article in English | MEDLINE | ID: mdl-36317823

ABSTRACT

In a recent study on visual episodic memory (Desaunay, Clochon, et al., 2020), we have shown event-related potentials (ERPs) differences associated with priming (150-300 msec), familiarity (350-470 msec), and recollection (600-700 msec), in young people with autism spectrum disorders (ASD) compared with typical development (TD). To go further into the study of the processes of storage and retrieval of the memory trace, we re-analyzed Desaunay, Clochon, et al's data using time-frequency analysis, that is, event-related synchronization and desynchronization (ERS/ERD). This allows a decomposition of the spectral power within frequency bands associated with these ERPs. We focused both on the same time windows and the same regions of interest as previously published. We mainly identified, in ASD compared with TD, reduced ERS in low-frequencies (delta, theta) in early time-windows, and non-significant differences in ERD in higher frequencies (alpha, beta1) in all time-windows. Reduced ERS during recognition confirmed previously reported diminution of priming effects and difficulties in manipulation and retrieval of both semantic and episodic information. Conversely, preserved ERD corroborates a preservation of memory storage processes. These observations are consistent with a cognitive model of memory in ASD, that suggests difficulties in cognitive operations or executive demand at retrieval, subsequent to successful long-term storage of information. LAY SUMMARY: We assessed the EEG synchronization and desynchronization, during visual episodic recognition. We observed, in youth with Autism, reduced synchronization in low-frequencies (delta, theta), suggesting reduced access to and manipulation of long-term stored information. By contrast, non-significant differences in desynchronization at higher frequencies (alpha, beta frequency bands), that support long-term stored semantic and episodic information, suggested preserved memory traces.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adolescent , Humans , Electroencephalography , Cortical Synchronization , Autism Spectrum Disorder/complications , Memory/physiology
5.
Cereb Cortex ; 33(7): 4026-4039, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36066405

ABSTRACT

The frontal sharp transient (FST) consists of transient electrical activity recorded around the transitional period from the in to ex utero environment. Although its positive predictive value is assumed, nothing is known about its functionality or origin. The objectives were (i) to define its characteristics and (ii) to develop functional hypothesis. The 128-channels high-resolution electroencephalograms of 20 healthy newborns (37.1-41.6 weeks) were studied. The morphological and time-frequency characteristics of 418 FSTs were analyzed. The source localization of the FSTs was obtained using a finite element head model (5 layers and fontanels) and various source localization methods (distributed and dipolar). The characteristics (duration, slopes, and amplitude) and the localization of FSTs were not modulated by the huge developmental neuronal processes that occur during the very last period of gestation. The sources were located beneath the ventral median part of the frontal lobe around the interhemispheric fissure, suggesting that the olfactory bulbs and orbitofrontal cortex, essential in olfaction and the mother-infant attachment relationship, are likely candidates for the generation of FSTs. FSTs may contribute to the implementation of the functionalities of brain structures involved in the higher-order processing necessary for survival ahead of delivery, with a genetic fingerprint.


Subject(s)
Brain , Electroencephalography , Humans , Infant, Newborn , Female , Frontal Lobe , Mothers , Predictive Value of Tests
6.
Dev Cogn Neurosci ; 58: 101168, 2022 12.
Article in English | MEDLINE | ID: mdl-36335806

ABSTRACT

Rhythm is a fundamental component of the auditory world, present even during the prenatal life. While there is evidence that some auditory capacities are already present before birth, whether and how the premature neural networks process auditory rhythm is yet not known. We investigated the neural response of premature neonates at 30-34 weeks gestational age to violations from rhythmic regularities in an auditory sequence using high-resolution electroencephalography and event-related potentials. Unpredicted rhythm violations elicited a fronto-central mismatch response, indicating that the premature neonates detected the rhythmic regularities. Next, we examined the cortical effective connectivity underlying the elicited mismatch response using dynamic causal modeling. We examined the connectivity between cortical sources using a set of 16 generative models that embedded alternate hypotheses about the role of the frontal cortex as well as backward fronto-temporal connection. Our results demonstrated that the processing of rhythm violations was not limited to the primary auditory areas, and as in the case of adults, encompassed a hierarchy of temporo-frontal cortical structures. The result also emphasized the importance of top-down (backward) projections from the frontal cortex in explaining the mismatch response. Our findings demonstrate a sophisticated cortical structure underlying predictive rhythm processing at the onset of the thalamocortical and cortico-cortical circuits, two months before term.


Subject(s)
Auditory Cortex , Electroencephalography , Adult , Infant, Newborn , Humans , Acoustic Stimulation , Evoked Potentials/physiology , Frontal Lobe , Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology
8.
J Neurodev Disord ; 14(1): 47, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030210

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is associated with atypical neural activity in resting state. Most of the studies have focused on abnormalities in alpha frequency as a marker of ASD dysfunctions. However, few have explored alpha synchronization within a specific interest in resting-state networks, namely the default mode network (DMN), the sensorimotor network (SMN), and the dorsal attention network (DAN). These functional connectivity analyses provide relevant insight into the neurophysiological correlates of multimodal integration in ASD. METHODS: Using high temporal resolution EEG, the present study investigates the functional connectivity in the alpha band within and between the DMN, SMN, and the DAN. We examined eyes-closed EEG alpha lagged phase synchronization, using standardized low-resolution brain electromagnetic tomography (sLORETA) in 29 participants with ASD and 38 developing (TD) controls (age, sex, and IQ matched). RESULTS: We observed reduced functional connectivity in the ASD group relative to TD controls, within and between the DMN, the SMN, and the DAN. We identified three hubs of dysconnectivity in ASD: the posterior cingulate cortex, the precuneus, and the medial frontal gyrus. These three regions also presented decreased current source density in the alpha band. CONCLUSION: These results shed light on possible multimodal integration impairments affecting the communication between bottom-up and top-down information. The observed hypoconnectivity between the DMN, SMN, and DAN could also be related to difficulties in switching between externally oriented attention and internally oriented thoughts.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Brain Mapping , Electroencephalography , Humans , Magnetic Resonance Imaging , Neural Pathways
9.
Sensors (Basel) ; 22(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35459077

ABSTRACT

Optically pumped magnetometers (OPMs) are new, room-temperature alternatives to superconducting quantum interference devices (SQUIDs) for measuring the brain's magnetic fields. The most used OPM in MagnetoEncephaloGraphy (MEG) are based on alkali atoms operating in the spin-exchange relaxation-free (SERF) regime. These sensors do not require cooling but have to be heated. Another kind of OPM, based on the parametric resonance of 4He atoms are operated at room temperature, suppressing the heat dissipation issue. They also have an advantageous bandwidth and dynamic range more suitable for MEG recordings. We quantitatively assessed the improvement (relative to a SQUID magnetometers array) in recording the magnetic field with a wearable 4He OPM-MEG system through data simulations. The OPM array and magnetoencephalography forward models were based on anatomical MRI data from an adult, a nine-year-old child, and 10 infants aged between one month and two years. Our simulations showed that a 4He OPMs array offers markedly better spatial specificity than a SQUID magnetometers array in various key performance areas (e.g., signal power, information content, and spatial resolution). Our results are also discussed regarding previous simulation results obtained for alkali OPM.


Subject(s)
Magnetoencephalography , Superconductivity , Adult , Alkalies , Animals , Child , Decapodiformes , Humans , Infant , Magnetic Fields , Magnetoencephalography/methods , Male
10.
Cereb Cortex ; 33(2): 278-289, 2022 12 20.
Article in English | MEDLINE | ID: mdl-35235654

ABSTRACT

Temporal theta activity in coalescence with slow-wave (TTA-SW) is one of the first neurobiomarkers of the neurodevelopment of perisylvian networks in the electroencephalography (EEG). Dynamic changes in the microstructure and activity within neural networks are reflected in the EEG. Slow oscillation slope can reflect synaptic strength, and cross-frequency coupling (CFC), associated with several putative functions in adults, can reflect neural communication. Here, we investigated the evolution of CFC, in terms of SW theta phase-amplitude coupling (PAC), during the course of very early development between 25 and 32 weeks of gestational age in 23 premature neonates. We used high-resolution EEG and dipole models as spatial filters to extract the source waveforms corresponding to TTA-SW. We also carried out nonlinear phase-dependent correlation measurements to examine whether the characteristics of the SW slopes are associated with TTA-SW coupling. We show that neurodevelopment leads to temporal accumulation of the SW theta PAC toward the trough of SW. Steepness of the negative going slope of SW determined the degree of this coupling. Systematic modulation of SW-TTA CFC during development is a signature of the complex development of local cortico-cortical perisylvian networks and distant thalamo-cortical neural circuits driving this nested activity over the perisylvian networks.


Subject(s)
Electroencephalography , Temporal Lobe , Infant, Newborn , Adult , Humans , Gestational Age , Neural Networks, Computer
11.
Int J Numer Method Biomed Eng ; 38(1): e3538, 2022 01.
Article in English | MEDLINE | ID: mdl-34617416

ABSTRACT

Diffuse optical tomography is a non-invasive and non-irradiating medical imaging technique that is particularly suitable for cerebral monitoring of newborns since it can be used at the bedside of the patient. Here, a new model for optical tomography in the neonatal brain is presented that takes into account the presence of arachnoid trabeculae in the cerebrospinal fluid (CSF). It is known that the classical diffusion approximation (DA) for light propagation is at the limit of validity in the CSF layer due to the low values of the absorption and scattering coefficients. The new model is obtained by the DA of the homogenized radiative transfer equation and is rigorously justified. Numerical results in two and three dimensions attest for the improved sensitivity of the new model to the presence of perturbations in the brain layer.


Subject(s)
Light , Tomography, Optical , Computer Simulation , Head/diagnostic imaging , Humans , Infant, Newborn , Scattering, Radiation , Tomography, Optical/methods
12.
Sci Rep ; 11(1): 22041, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764396

ABSTRACT

The neonatal transition involves physiological modifications as a consequence of the complexity of the perinatal period. Various strategies can be used to attain the same level of postnatal cerebral oxygenation, depending on the status of the infant at birth. We evaluated such strategies by recording 20 full-term newborns by near-infrared spectroscopy during the first 10 min of life. The acid-base status at birth revealed two clustered profiles of cerebral oxygenation dynamics. Lower pH and base excess and higher lactate levels were associated with more rapid attainment of the 95% maximal tissue oxygenation index value. These results suggest that metabolic mechanisms drive initial cerebral oxygenation dynamics during this critical period. These results confirm the capacity of newborns to develop multiple strategies to protect the brain.


Subject(s)
Acid-Base Equilibrium , Brain/blood supply , Oxygen/metabolism , Adaptation, Physiological , Brain/metabolism , Cerebrovascular Circulation , Humans , Infant, Newborn , Monitoring, Physiologic/methods , Spectroscopy, Near-Infrared/methods , Term Birth
13.
Neurophysiol Clin ; 51(5): 409-424, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34481708

ABSTRACT

OBJECTIVES: Reversal learning is widely used to analyze cognitive flexibility and characterize behavioral abnormalities associated with impulsivity and disinhibition. Recent studies using fMRI have focused on regions involved in reversal learning with negative and positive reinforcers. Although the frontal cortex has been consistently implicated in reversal learning, few studies have focused on whether reward and punishment may have different effects on lateral frontal structures in these tasks. METHODS: During this pilot study on eight healthy subjects, we used functional near infra-red spectroscopy (fNIRS) to characterize brain activity dynamics and differentiate the involvement of frontal structures in learning driven by reward and punishment. RESULTS: We observed functional hemispheric asymmetries between punishment and reward processing by fNIRS following reversal of a learned rule. Moreover, the left dorsolateral prefrontal cortex (l-DLPFC) and inferior frontal gyrus (IFG) were activated under the reward condition only, whereas the orbito-frontal cortex (OFC) was significantly activated under the punishment condition, with a tendency towards activation for the right cortical hemisphere (r-DLPFC and r-IFG). Our results are compatible with the suggestion that the DLPFC is involved in the detection of contingency change. We propose a new representation for reward and punishment, with left lateralization for the reward process. CONCLUSIONS: The results of this pilot study provide insights into the indirect neural mechanisms of reversal learning and behavioral flexibility and confirm the use of fNIRS imaging in reversal-learning tasks as a translational strategy, particularly in subjects who cannot undergo fMRI recordings.


Subject(s)
Reversal Learning , Spectroscopy, Near-Infrared , Hemodynamics , Humans , Magnetic Resonance Imaging , Pilot Projects , Prefrontal Cortex/diagnostic imaging
14.
Int Immunopharmacol ; 99: 107955, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34247052

ABSTRACT

Cancer vaccines have gained lots of attention as the future of cancer treatment. However, poor immunogenicity of tumor-associated antigens often fails to induce an efficient immune response against the tumor. Strange anti-tumor immune responses at the parasite-infected patients due to cross-reactivity have been reported in various studies. Therefore, parasite antigens with significant immunogenicity and high epitope homology with cancer antigens may activate a strong immune response against cancer cells. Herein, the sera of immunized rabbits with the hydatid cyst wall (HCW) antigens were incubated with 4 T1 mammary carcinoma cells to investigate cross-reactivity between the HCW antigens antisera and surface antigens of the breast cancer cells. Also, the SDS-PAGE profile of HCW antigens was prepared and incubated with the breast cancer patients' sera and considerable reactivity was observed between their sera and a specific band (~27/28 kDa) according to Western blotting analyzes. Then, the protein bands with cross-reactivity with breast cancer patients' sera were utilized for prophylactic immunizations of Balb/c mice. The immunoprotective effect of immunization with the HCW antigens caused significant inhibition of 4 T1 breast tumor growth, decrease of metastasis, and enlargement of the tumor-bearing mice survival time in comparison with PBS and pure immune adjuvant injected groups. Mass spectrometry analysis showed that the ~ 27/28 kDa band has numbers of proteins/polypeptides with a high degree of homology with cancer cells antigens which can be the reason for this cross-reactivity and anti-tumor immune response. Taking together, immunization with HCW antigens would be a promising approach in cancer immunotherapy after further investigations.


Subject(s)
Antigens, Neoplasm/immunology , Breast Neoplasms/immunology , Echinococcosis/immunology , Adjuvants, Immunologic , Animals , Epitopes/metabolism , Female , Humans , Immunity , Immunization , Immunotherapy , Mass Spectrometry , Mice , Mice, Inbred BALB C , Molecular Weight , Neoplasms, Experimental/immunology , Rabbits
15.
Front Neurol ; 12: 596926, 2021.
Article in English | MEDLINE | ID: mdl-33643187

ABSTRACT

Interictal spikes (IISs) may result from a disturbance of the intimate functional balance between various neuronal (synaptic and non-synaptic), vascular, and metabolic compartments. To better characterize the complex interactions within these compartments at different scales we developed a simultaneous multimodal-multiscale approach and measure their activity around the time of the IIS. We performed such measurements in an epileptic rat model (n = 43). We thus evaluated (1) synaptic dynamics by combining electrocorticography and multiunit activity recording in the time and time-frequency domain, (2) non-synaptic dynamics by recording modifications in light scattering induced by changes in the membrane configuration related to cell activity using the fast optical signal, and (3) vascular dynamics using functional near-infrared spectroscopy and, independently but simultaneously to the electrocorticography, the changes in cerebral blood flow using diffuse correlation spectroscopy. The first observed alterations in the measured signals occurred in the hemodynamic compartments a few seconds before the peak of the IIS. These hemodynamic changes were followed by changes in coherence and then synchronization between the deep and superficial neural networks in the 1 s preceding the IIS peaks. Finally, changes in light scattering before the epileptic spikes suggest a change in membrane configuration before the IIS. Our multimodal, multiscale approach highlights the complexity of (1) interactions between the various neuronal, vascular, and extracellular compartments, (2) neural interactions between various layers, (3) the synaptic mechanisms (coherence and synchronization), and (4) non-synaptic mechanisms that take place in the neuronal network around the time of the IISs in a very specific cerebral hemodynamic environment.

16.
PLoS One ; 16(1): e0245188, 2021.
Article in English | MEDLINE | ID: mdl-33493171

ABSTRACT

Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for idiopathic Parkinson's disease. Despite recent progress, the mechanisms responsible for the technique's effectiveness have yet to be fully elucidated. The purpose of the present study was to gain new insights into the interactions between STN-DBS and cortical network activity. We therefore combined high-resolution functional near-infrared spectroscopy with low-resolution electroencephalography in seven Parkinsonian patients on STN-DBS, and measured cortical haemodynamic changes at rest and during hand movement in the presence and absence of stimulation (the ON-stim and OFF-stim conditions, respectively) in the off-drug condition. The relative changes in oxyhaemoglobin [HbO], deoxyhaemoglobin [HbR], and total haemoglobin [HbT] levels were analyzed continuously. At rest, the [HbO], [HbR], and [HbT] over the bilateral sensorimotor (SM), premotor (PM) and dorsolateral prefrontal (DLPF) cortices decreased steadily throughout the duration of stimulation, relative to the OFF-stim condition. During hand movement in the OFF-stim condition, [HbO] increased and [HbR] decreased concomitantly over the contralateral SM cortex (as a result of neurovascular coupling), and [HbO], [HbR], and [HbT] increased concomitantly in the dorsolateral prefrontal cortex (DLPFC)-suggesting an increase in blood volume in this brain area. During hand movement with STN-DBS, the increase in [HbO] was over the contralateral SM and PM cortices was significantly lower than in the OFF-stim condition, as was the decrease in [HbO] and [HbT] in the DLPFC. Our results indicate that STN-DBS is associated with a reduction in blood volume over the SM, PM and DLPF cortices, regardless of whether or not the patient is performing a task. This particular effect on cortical networks might explain not only STN-DBS's clinical effectiveness but also some of the associated adverse effects.


Subject(s)
Deep Brain Stimulation , Hemodynamics , Motor Cortex , Parkinson Disease , Prefrontal Cortex , Subthalamic Nucleus , Aged , Female , Humans , Male , Middle Aged , Motor Cortex/blood supply , Motor Cortex/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Prefrontal Cortex/blood supply , Prefrontal Cortex/diagnostic imaging , Subthalamic Nucleus/blood supply , Subthalamic Nucleus/diagnostic imaging
17.
Neurophysiol Clin ; 51(1): 5-33, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33162287

ABSTRACT

Electroencephalography is the only clinically available technique that can address the premature neonate normal and pathological functional development week after week. The changes in the electroencephalogram (EEG) result from gradual structural and functional modifications that arise during the last trimester of pregnancy. Here, we review the structural changes over time that underlie the establishment of functional immature neural networks, the impact of certain anatomical specificities (fontanelles, connectivity, etc.) on the EEG, limitations in EEG interpretation, and the utility of high-resolution EEG (HR-EEG) in premature newborns (a promising technique with a high degree of spatiotemporal resolution). In particular, we classify EEG features according to whether they are manifestations of endogenous generators (i.e. theta activities that coalesce with a slow wave or delta brushes) or come from a broader network. Furthermore, we review publications on EEG in premature animals because the data provide a better understanding of what is happening in premature newborns. We then discuss the results and limitations of functional connectivity analyses in premature newborns. Lastly, we report on the magnetoelectroencephalographic studies of brain activity in the fetus. A better understanding of complex interactions at various structural and functional levels during normal neurodevelopment (as assessed using electroencephalography as a benchmark method) might lead to better clinical care and monitoring for premature neonates.


Subject(s)
Brain , Electroencephalography , Animals , Female , Humans , Infant, Newborn , Pregnancy
18.
Front Neurol ; 11: 941, 2020.
Article in English | MEDLINE | ID: mdl-33013634

ABSTRACT

Objective: Characterization of the spatial and temporal dynamics of interictal epileptic discharges (IED) using time-frequency analysis (TFA) and electrical-source localization (ESL). Methods: TFA was performed on IED (spikes, spike waves, and polyspike waves) recorded by high-density-EEG (HD-EEG) in 19 refractory focal epileptic children. Temporal modulations related to IEDs were analyzed in a time window around the IED peaks [-1,000 to 1,000 ms]. Spatial modulations were analyzed by ESL in the time-frequency and time domains. Results: IED were associated with complex power spectral modulations. We observed increases in power spectrum (IPS) patterns specific to IED type. For spikes, the TFA pattern consisted of an IPS (-100 to +100 ms, 4-50 Hz). For spike waves, the IPS was followed by a second IPS (+100 to +400 ms, 4-10 Hz), corresponding to the slow wave. IPS patterns were preceded (-400 to -100 ms, 4-40 Hz), and followed (+100 to +400 ms) by a decrease in the power spectrum (DPS) (n = 8). For 14 out of 19 patients, at least one ESL method was concordant with the epileptogenic area. For the remaining five patients, all of them had temporal epilepsies. ESL in the time-frequency domain (DPS/IPS) provided concordant (n = 6) or complementary (n = 4) information to the ESL in the time domain concerning the epileptogenic zone. ESL in time-frequency domain (DPS/IPS) was the only method to provide concordant information concerning the epileptogenic zone in three patients. Significance: TFA demonstrates complex time-frequency modulations of the neuronal networks around IED, suggesting that the pathological mechanisms are initiated well before onset of the classical hyper-synchronization of the IED. Combining time and time-frequency analysis of the ESL provides complementary information to define the epileptogenic zone in refractory focal epilepsy.

19.
Autism Res ; 13(11): 1998-2016, 2020 11.
Article in English | MEDLINE | ID: mdl-32918532

ABSTRACT

Behavioral data on episodic recollection in autism spectrum disorders (ASD) point limited relational memory functioning. However, the involvement of successive memory processes in the profile of episodic memory in ASD needs more study. Here, we used event-related potentials (ERP) to investigate the time course of episodic recollection with an associative recognition paradigm with picture pairs. Twenty-two participants with ASD and 32 with typical development (TD), all right-handed, were included. Behavioral results confirmed difficulties in correctly recognizing identical pairs in the ASD relative to TD group. We found an unexpected amplitude decrement on the P2 (220-270 msec) and FN400 (350-470 msec) potentials, suggesting diminished priming and familiarity effects in the ASD relative to TD group. However, ERP data revealed that the recognition of associative information relies on the same electrophysiological process (old/new effect in the 600-700-msec late positive component) in ASD participants as in TD ones, with a parietal extension in the ASD group. These results suggest that the electrophysiological processes of associative recognition are qualitatively similar in individuals with and without ASD but may differ quantitatively. This difference may be driven by the reduced early processing of picture pairs that may in turn lead to their diminished integration into the semantic memory system, being partially compensated by a greater involvement of associative memory during the recollection process. Other studies would be useful to go further in identifying these cognitive processes involved in atypical recognition in ASD and their neural substrates. Autism Res 2020, 13: 1998-2016. © 2020 International Society for Autism Research and Wiley Periodicals LLC LAY SUMMARY: We identified diminished performance on the associative recognition of picture pairs in adolescents and young adults with autism when compared to typical development. Electrophysiological data revealed qualitative similarities but quantitative differences between-group, with diminished priming and familiarity processes partially compensated by an enhanced parietal recollection process.


Subject(s)
Autism Spectrum Disorder , Adolescent , Evoked Potentials , Humans , Mental Recall , Recognition, Psychology , Young Adult
20.
Brain Struct Funct ; 225(7): 2165-2176, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32691217

ABSTRACT

Functional responses recorded during the last trimester of gestation reveal that human sensory activity begins before birth, allowing the brain to process the external environment. Along with the maturation of the brain, new cognitive skills emerge in the human infant's brain. The development of non-invasive techniques provides the opportunity to study the relationship between brain structural maturation and cognitive development in vivo. Here, we aimed to relate developmental changes of the latency of cortical auditory evoked potentials (CAEPs) to a structural maturation index, presumed to be representative of myelination. CAEPs to syllables were recorded in 17 preterm neonates with a mean recording age of 30.5 weeks gestational age (28.4-32.2 wGA). The latency of the first peak of the global field power (GFP) was considered the functional feature of interest to be examined for correlation with age and the structural maturation index extracted from brain atlases of the corresponding term age. GFP latency significantly decreased with age (R2 = 0.311, p = 0.02). Structural maturation indices, calculated as the mean values of T1w/T2w image intensities, were extracted for various brain regions. We observed significant correlations between the maturation indices of the auditory-involved areas and the latency of the GFP first-peak, as well as age. In hierarchical models, neither the structural maturation index nor age contributed to significant additional variance in the GFP first-peak latency after accounting for the variance associated with the other parameter.


Subject(s)
Auditory Cortex/growth & development , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Infant, Premature/physiology , Female , Gestational Age , Humans , Infant , Infant, Newborn , Male , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...